Задание 13 из ЕГЭ по математике (профиль): задача 13

Разбор сложных заданий в тг-канале:

а) Решите уравнение $\sin^2({3π} / {2}-x)+{√ 3} / {2}\sin 2x=0$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{7π}/2; -2{π}]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $2\cos ({3π} / {2}-x)⋅\sin({π} / {2}-x)=√ 3\sin(2π+x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{11π}/2; -3{π}]$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение ${sin x - 1}/{1 + cos2x}= {sin x - 1}/{1 + cos(π+ x)}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-{3π}/{2};-{π}/{2}]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!