Задание 13 из ЕГЭ по математике (профиль): задача 19

Разбор сложных заданий в тг-канале:

а) Решите уравнение $2\log_3(\cos 2x-\sin x+√ 3)=1$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{π}/2; {3π}/2]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение $\sin2x=√ 2\sin({3π} / {2}-x)$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $[-3{π}; -{3π}/2]$.

а) Решите уравнение $4\cos^3x-2√ 3\cos2x+3\cos x=2√ 3$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ \( -{17π} / {2} ; -7π\]$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.