Задание 13 из ЕГЭ по математике (профиль): задача 1

Разбор сложных заданий в тг-канале:

а) Решите уравнение $3\cos({3π} / {2}-2x)-2\cos(π+x)=0$.

б) Найдите корни этого уравнения, принадлежащие отрезку $[{5π}/2; 4{π}].$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

a) Решите уравнение $2\cos2(x-{π} / {3})+8\cos(x-{π} / {3})=3$.

б) Найдите корни данного уравнения, принадлежащие отрезку $ [3{π}; {9π}/2] $.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение $2 log_x^2 √5 = {5ln√5}/{ln x} - 2$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $(1.5; 7]$.