Задание 13 из ЕГЭ по математике (профиль): задача 1
а) Решите уравнение $3\cos({3π} / {2}-2x)-2\cos(π+x)=0$.
б) Найдите корни этого уравнения, принадлежащие отрезку $[{5π}/2; 4{π}].$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
а) Решите уравнение $(2 sin^2 4x - 3 cos 4x)·√{tg x} = 0$.
б) Укажите корни этого уравнения, принадлежащие промежутку $(0;{3π}/{2}]$.
а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.
б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.
а) Решите уравнение $2\cos ({3π} / {2}-x)⋅\sin({π} / {2}-x)=√ 3\sin(2π+x)$.
б) Найдите корни данного уравнения, принадлежащие отрезку $[-{11π}/2; -3{π}]$.