Задание 13 из ЕГЭ по математике (профиль): задача 16

Разбор сложных заданий в тг-канале:

а) Решите уравнение $\cos2x=\sin(x-{5π} / {2})$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $[5{π}; {13π}/2]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение $\sin^2({3π} / {2}-x)+{√ 3} / {2}\sin 2x=0$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{7π}/2; -2{π}]$.

а) Решите уравнение $0.2^{2 cos x-1} - 26· 0.2^{cos x-{1}/{2}} + 25 = 0$.

б) Укажите корни этого уравнения, принадлежащие отрезку $[-π; {3π}/{2}]$.