Задание 13 из ЕГЭ по математике (профиль): задача 9

Разбор сложных заданий в тг-канале:

а) Решите уравнение $2\cos x⋅\sin^2x+√ 3\sin2x+1{,}5\cos x=0$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $[-4{π}; -{5π}/2]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение $2√ 3⋅\cos^2(x-{3π} / {2})-\sin2x=0$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{9π}/2; -3{π}] $.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение $2\log_2√ {25x^4+7}-\log_2(63x^2+1)=1$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!