Задание 13 из ЕГЭ по математике (профиль): задача 4

Разбор сложных заданий в тг-канале:

а) Решите уравнение $2\sin^3x-√ 3\cos^2x-2\sin x=0$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ [-{5π}/2; -{π}] $.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

1) Решите уравнение $\cos2(x+{π} / {6})+4\sin(x+{π} / {6})={5} / {2}$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение $2+\log_2(7x^2+1)-\log_{√ 2}√ {9x^4+7}=0$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.