Задание 13 из ЕГЭ по математике (профиль): задача 20

Разбор сложных заданий в тг-канале:

а) Решите уравнение $\cos^2(x-π)+√ 3\cos x\sin x=1$

б) Найдите корни данного уравнения, принадлежащие отрезку $ [-{π}; {3π}/2] $.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

a) Решите уравнение $2\cos2(x-{π} / {3})+8\cos(x-{π} / {3})=3$.

б) Найдите корни данного уравнения, принадлежащие отрезку $ [3{π}; {9π}/2] $.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение $2\sin ({3π} / {2}+x)⋅\cos({π} / {2}+x)=√ {2}\cos(3π-x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[3{π}; {9π}/2] $.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!