Задание 13 из ЕГЭ по математике (профиль): задача 8

Разбор сложных заданий в тг-канале:

а) Решите уравнение $2\sin x⋅\cos^2x-\sin2x+0{,}5\sin x=0$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ [-{π}/2; {π}] $.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $\sin2x=√ 2\sin({3π} / {2}-x)$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $[-3{π}; -{3π}/2]$.

а) Решите уравнение $2log_2^2({sinx}/{2})-7log_2({sinx}/{2})-15=0$.

б) Укажите корни этого уравнения, принадлежащие отрезку $[{π}/{2};3π]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.