Задание 13 из ЕГЭ по математике (профиль): задача 3

Разбор сложных заданий в тг-канале:

1) Решите уравнение $\cos2(x+{π} / {6})+4\sin(x+{π} / {6})={5} / {2}$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение $2\cos ({3π} / {2}-x)⋅\sin({π} / {2}-x)=√ 3\sin(2π+x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{11π}/2; -3{π}]$.

а) Решите уравнение ${sin x + 1}/{1 - cos(2x)}= {sin x + 1}/{1 + cos({π}/{2}+ x)}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-{3π}/{2};-{π}/{2}]$.