Задание 1 из ЕГЭ по математике (профиль)
Тема: «Планиметрия. Четырехугольники»
В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.
В остроугольном треугольнике $ABC$ угол $C$ равен $72^°$. $BH$ и $AM$ — высоты, пересекающиеся в точке $O$ (см. рис.). Найдите угол $HOM$. Ответ дайте в градусах.
В треугольнике $MNK$ известно, что $MK=NK$, $MN=4{,}8$, $\sin M={21} / {29}$ (см. рис.). Найдите $MK$.
В треугольнике $ABC$ угол $A$ равен $75^°$, угол $C$ равен $35^°$, $AM$ — биссектриса, $T$ — такая точка на $AC$, что $AT = AB$. Найдите угол $CMT$. Ответ дайте в градусах.
В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=3$, $\cos A={4} / {5}$ (см. рис.). Найдите $AB$.
Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Угол $CAB$ равен $54^°$. Найдите угол $AOB$. Ответ дайте в градусах.
Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь относится к площади прямоугольника как $√ {3}:2$.
Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?
В треугольнике $ABC$ $AC=BC$, $AB=15$
и $\tg ∠ BAC={2√ {5}} / {5}$ (см. рис.). Найдите высоту $AH$.
В треугольнике $ABC$ сторона $AC$ равна стороне $BC$, $AB=12$ и $\tg ∠ BAC={3√ {7}} / {7}$
(см. рис.). Найдите высоту $AH$.
В треугольнике $ABC$ угол $A$ равен $67^°$, а углы $B$ и $C$ — острые. $BD$ и $CE$ — высоты, пересекающиеся в точке $O$ (см. рис.). Найдите угол $DOE$. Ответ дайте в градусах.
Два угла треугольника равны $48^°$ и $64^°$ (см. рис.). Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.
В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\tg A=0{,}7$ (см. рис.). Найдите $BC$.
В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=10$, $\tg A=0{,}3$ (см. рис.). Найдите $BC$.
В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=4√ {7}$, $\tg A={√ {3}} / {2}$ (см. рис.). Найдите $AB$.
Окружность, вписанная в равнобедренный треугольник $ABC$, касается боковой стороны в точке $K$ (см. рис.). Найдите длину отрезка $CK$, если известно, что периметр треугольника равен $36$ и…
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основа…
Найдите периметр прямоугольника, если его площадь равна $24$, а отношение соседних сторон равно $2 : 3$.
Задача один из ЕГЭ по математике проверяет ваше умение решать уравнения, причем в экзаменационном билете может попасться любой тип: рациональные и иррациональные, квадратные или кубические, логарифмические и тригонометрические. Большой раздел номера 1 по математике посвящен показательным, которые традиционно вызывают у школьников некоторые затруднения: неизвестная величина в таких выражениях находится в показателе степени числа. Есть в вариантах и простейшие линейные, решаемые за несколько секунд в одно действие.
Построение вопросов в первом задании одинаково — вам предлагается уравнение, вы должны его решить (для этого понадобится черновик, его использование на ЕГЭ по математике разрешено), а результат вписать в бланк экзаменационной работы. Чтобы выпускники допускали меньше ошибок, составители тестов решили упростить предлагаемые уравнения — ответы на подавляющее количество их будет представлять простое целое число: к примеру, 4 или 2. Некоторые, особенно тригонометрические и некоторые другие, могут иметь два и более варианта, каждый из которых будет верным. В этом случае уточняется: «В ответ запишите наибольшее отрицательное из нескольких получившихся». Сами выражения в задачах также были составлены так, чтобы решение их проходило максимально просто, в минимально возможное число действий.
Сложны для решения иррациональные — такие, что обязательно содержат в себе квадратный или кубический корень. Вам будет проще, если вы будете помнить о том, что даже в таких выражениях ответ будет максимально «удобным» — простым целым числом, а если таких чисел несколько, то вас ждет уточнение: «Если уравнение имеет более одного правильного решения, в ответ запишите меньшее из полученных чисел».