Задание 1 из ЕГЭ по математике (профиль): задача 18

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 16 сек.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основанию (см. рис.). Найдите периметр треугольника.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

В треугольнике $ABC$ угол $A$ равен $48°$. На продолжении стороны $AB$ за точку $B$ отложен отрезок $BD$, равный стороне $BC$. Найдите угол $D$ треугольника $BCD$, если угол $ACB$ равен $62°$. Ответ дай…

В четырёхугольнике $ABCD$ стороны $AB, BC, CD$ и $AD$ стягивают дуги описанной окружности, градусные величины которых равны соответственно $75°, 84°, 51°, 150°$. Найдите угол $B$ этого четыр…