Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 9 сек.

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-8; 4)$. В какой точке отрезка $[-7; -3]$ функция $f(x)$ принимает наименьшее значение?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Материальная точка движется прямолинейно по закону $x(t) = -t^{4} +7t^{3} +6t+16$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. Н…

На рисунке изображён график функции $y=f(x)$ и касательная к нему в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^{3} - 4t^{2} + t$, где $x$ - расстояние от точки отсчета в метрах, $t$ -  время в секундах, измеренное с начала движен…

На рисунке изображён график функции $y=f(x)$ и отмечены точки $-7$; $-5$; $-1$;$1$. В какой из этих точек значение производной наибольшее?