На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произ…
На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произвольные три числа, сумма которых больше 59 и отлична от каждой из сумм троек чисел, стёртых на предыдущих ходах.
а) Приведите пример последовательных 7 ходов.
б) Можно ли сделать 12 ходов?
в) Какое наибольшее число ходов можно сделать?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите все значения параметра $a$, при каждом из которых система уравнений $\{{\table {y=a-x{,}}; {|x-2|(y+5x-10)=(x-2)^3};}$ имеет ровно четыре различных решения.
На доске выписаны числа $10$ и $11$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами ($2a+1$) и ($a+b$). Например, из чисел $10$ и $11$ можно получить либо $21$ и $21$, либо числ…
В ряд выписаны $n$ натуральных чисел. Сумма любых четырёх последовательных чисел равна $12$.
а) Возможно ли, что сумма всех чисел равна $6050$, если $n = 2016$?
б) Возможно ли, что сумма в…