Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ …
Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:
а) пять чисел;
б) пятьдесят чисел;
в) бесконечное множество чисел, которые образуют арифметическую прогрессию.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
При проведении школьной математической олимпиады итоговая сумма баллов составляется из трёх баллов за участие, $17$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую …
Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.