Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
Дана последовательность натуральных чисел, в которой каждое число, кроме первог…
Дана последовательность натуральных чисел, в которой каждое число, кроме первого и последнего, больше среднего арифметического соседних с ним членов этой последовательности.
а) Приведите пример последовательности, состоящей из пяти членов, с суммой, равной 50.
б) Может ли в последовательности из пяти членов быть два равных между собой?
в) Какая минимальная сумма может быть в последовательности из шести членов?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В ряд выписаны $n$ натуральных чисел. Сумма любых четырёх последовательных чисел равна $12$.
а) Возможно ли, что сумма всех чисел равна $6050$, если $n = 2016$?
б) Возможно ли, что сумма в…
Найдите все значения параметра $a$, при каждом из которых система уравнений $\{{\table {y=a-x{,}}; {|x-2|(y+5x-10)=(x-2)^3};}$ имеет ровно четыре различных решения.
На доске выписаны числа $7$ и $8$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами $(2a+3)$ и $(2+a+b)$. Например, из чисел $7$ и $8$ можно получить либо числа $(17;17)$, либо …