Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
Стрелок ведёт стрельбу по закрывающимся $4n-1 (n ∈ N, n > 1)$ мишеням, расположен…
Стрелок ведёт стрельбу по закрывающимся $4n-1 (n ∈ N, n > 1)$ мишеням, расположенным в одну линию друг за другом. Результаты стрельбы заносятся в одну строку, состоящую из $4n - 1$ клеток. Если мишень поражена, то в соответствующую клетку заносится 1, если нет, то 0. Если в средней клетке этой строки 1, а в симметричных относительно неё числа одинаковые, то результат называется исключительным. Если же число единиц больше числа нулей, то проходным.
а) Укажите число всех возможных различных результатов при $n = 3$.
б) Укажите число всех возможных различных исключительных результатов при $n = 2$.
в) Найдите формулу, по которой можно находить число всех возможных различных результатов, которые одновременно являются проходными и исключительными.
г) Укажите наибольшее значение $n$, при котором число всех возможных различных результатов, указанных в пункте в), меньше 1700.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произвольные три числа, сумма которых меньше 40 и отлична от каждой из сумм троек чисел, стёртых на предыд…
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.