Зарегистрироваться Войти через вк

Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из р…

Разбор сложных заданий в тг-канале:

Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.

а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ ровно три числа делятся на $90$?

б) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_{40}$ ровно $11$ чисел делятся на $90$?

в) Для какого наибольшего натурального числа n могло оказаться так, что среди чисел $a_1, a_2, . . . , a_{3n}$ больше кратных $90$, чем среди чисел $a_{3n+1}, a_{3n+2}, . . . , a_{7n}$, если дополнительно известно, что разность прогрессии равна $1$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 4725 и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?

Последовательность натуральных чисел: $1, 3, 6, 10, 15, …$ задана формулой $a_n={1} / {2}n(n+1)$. Можно ли среди а) её членов, меньших числа $100$, выбрать семь чисел так, чтобы одно из …

Света задумала трёхзначное натуральное число, не кратное 100.

а) Может ли частное этого числа и суммы его цифр быть равным 40?

б) Может ли частное этого числа и суммы его цифр быть…

Света задумала трёхзначное натуральное число, не кратное 100.

а) Может ли частное этого числа и суммы его цифр быть равным 40?

б) Может ли частное этого числа и суммы его цифр быть…