Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из р…
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ ровно три числа делятся на $90$?
б) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_{40}$ ровно $11$ чисел делятся на $90$?
в) Для какого наибольшего натурального числа n могло оказаться так, что среди чисел $a_1, a_2, . . . , a_{3n}$ больше кратных $90$, чем среди чисел $a_{3n+1}, a_{3n+2}, . . . , a_{7n}$, если дополнительно известно, что разность прогрессии равна $1$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Для $20$ студентов профессор подготовил две контрольные работы. Любой студент может написать только одну из них или обе. За каждую контрольную работу можно получить от $0$ до $30$ баллов…
На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произвольные три числа, сумма которых больше 59 и отлична от каждой из сумм троек чисел, стёртых на предыд…
На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произвольные три числа, сумма которых больше 59 и отлична от каждой из сумм троек чисел, стёртых на предыд…