Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из р…
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ ровно три числа делятся на $90$?
б) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_{40}$ ровно $11$ чисел делятся на $90$?
в) Для какого наибольшего натурального числа n могло оказаться так, что среди чисел $a_1, a_2, . . . , a_{3n}$ больше кратных $90$, чем среди чисел $a_{3n+1}, a_{3n+2}, . . . , a_{7n}$, если дополнительно известно, что разность прогрессии равна $1$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Кристина задумала трёхзначное натуральное число.
а) Может ли частное этого числа и суммы его цифр быть равным 3?
б) Может ли частное этого числа и суммы его цифр быть равным 28?
в)…
На доске записаны числа 4, 5, 6, 7, 8, 9, 10, . . . 18. За один ход разрешается стереть произвольно три числа, сумма которых меньше 32 и отлична от каждой из сумм троек чисел, стёр…
Для $20$ студентов профессор подготовил две контрольные работы. Любой студент может написать только одну из них или обе. За каждую контрольную работу можно получить от $0$ до $30$ баллов…