Найдите все неотрицательные значения $a$, при каждом из которых система уравнений…
Найдите все неотрицательные значения $a$, при каждом из которых система уравнений
$\{\table\√{(x-a)^2+y^2}+√{x^2+(y+1)^2}=√{a^2+1}; \3x={|a^2-4|};$
имеет единственное решение.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?
При каких значениях параметра $a$ система
$\{\table\x^2+y^2+84=a^2+18x; \ {||x-8|-|x-6||}=y;$
имеет не менее трёх решений.
При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?