Найдите все значения параметра $a$, при каждом из которых ровно одно решение нера…
Найдите все значения параметра $a$, при каждом из которых ровно одно решение неравенства $4x^2-4x-a^2+4a⩽3$ удовлетворяет неравенству $ax(a-2+x)⩾0$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите все значения параметра a, при каждом из которых уравнение $x^2 + ax + 4 = √{20x^2 + 8ax + 16}$ имеет ровно три различных корня.
При каких значениях параметра $a$ система
$\{\table\y≥-{|x-2cosπa|}; \(x-sin2πa)^2+(y-6a)^2=-99a;$
имеет ровно два решения?
При каких значениях a система уравнений имеет ровно четыре решения?
$\{\table{{|{|x|}-3|}+{|y-5|}}=4; {{|x-2|}+{|y-1|}}=a;$