Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
При каких значениях $a$ система уравнений имеет ровно два решения? $\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$ …
При каких значениях $a$ система уравнений имеет ровно два решения?
$\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?
При каких значениях параметра $a$ система $\{\table\x-√3{|y|}=0; \(x-2a)^2+(y-cosπa)^2≤(5a-21)^2;$ имеет ровно два решения?
При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?