Две окружности различных радиусов касаются друг друга внешним образом. Их общие…
Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая - соответственно в точках B и D.
а) Докажите, что прямая AB перпендикулярна биссектрисе угла, образованного указанными касательными.
б) Найдите расстояние от середины отрезка AB до точки C, если радиусы окружностей равны 2 и 6.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В остроугольном треугольнике $ABC$ проведены высоты $AK$ и $CM$. На них из точек $M$ и $K$ опущены перпендикуляры $ME$ и $KH$ соответственно. а) Докажите, что прямые $EH$ и $AC$ параллельны. б) Найд…
В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.
а) Докажите, что треугольник $ABC$ прямоугольный.
б) Вычислите $HM$.