Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC …
Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.
а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, вписанной в треугольник ABC.
б) Найдите расстояние между центрами этих окружностей, если AB = 11, AC = 14, BK = 3.08, где K - точка пересечения стороны BC и биссектрисы, проведённой из вершины A.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …
Две окружности с центрами $O_1$ и $O_2$ пересекаются в точках $M$ и $N$, причём точки $O_1$ и $O_2$ лежат по разные стороны от прямой $MN$. Продолжение диаметра $AM$ первой окружности и хорды $AN$ э…