Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая сто…
К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую BC в точке P. В каком отношении прямая, проходящая через точку P и центр окружности, делит сторону AB (считая от точки A), если AN : ND = 1 : 4?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания трапеции равны $6$ и $19$, а её диагонали равны $7$ и $24$.
а) Докажите, что диагонали трапеции перпендикулярны.
б) Найдите площадь трапеции.
Две окружности касаются внешним образом в точке $K$. Прямая $AB$ касается первой окружности в точке $A$, а второй — в точке $B$. Прямая $BK$ пересекает первую окружность в точке $D$, прямая $AK$ …
В треугольнике $ABC$ с прямым углом $C$ $MN$ - средняя линия, параллельная стороне $AC$. Биссектриса угла $A$ пересекает луч $MN$ в точке $K$.
а) Докажите, что $△BKC~△AMK$.
б) Найдите отношение $S_{BKC} : S_{AMK}$,…