Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ …
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $E$ и $F$.
а) Докажите что центр окружности, вписанной в треугольник $BEF$, лежит на окружности, вписанной в треугольник $ABC$.
б) Найдите расстояние между центрами этих окружностей, если $AB = BC, BE = 13, EF = 10, S_{BEF} : S_{ABC} = 4 : 9$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1K$ ко второй окружности ($K$ - точка касания), а из точки $O_2$ провед…
В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …