Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание…
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиусом 2, касающиеся её сторон и друг друга, причём K - одна из точек касания.
а) Докажите, что треугольник ABK равнобедренный.
б) Найдите площадь трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
ABCD - прямоугольник. Окружность с центром в точке B радиусом AB пересекает продолжение стороны AB в точке E. Прямая EC пересекает прямую AD в точке K, а окружность во второй раз -…
Вклад планируется открыть на четыре года. Первоначальный вклад составляет целое число миллионов рублей. В конце каждого года вклад увеличивается на $4%$ по сравнению с его размером в…