Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Бесплатный интенсив по математике (профиль)

28 марта — 3 апреля

На бесплатном интенсиве ты:
✅ Научишься решать показательные и логарифмические уравнения, которые встречаются в №5 и №12 в ЕГЭ.
✅ Сможешь выполнять №10 с показательными и логарифмическими функциями.
✅ Запомнишь квадраты и кубы чисел, которые встречаются чаще всего в вариантах.
✅ Узнаешь, как правильно оформлять уравнение №12 в бланке.
✅ Вспомнишь все свойства степеней, а также все основные сдвиги функций.

В треугольнике $ABC$ проведены медианы $BB_1$ и $CC_1$. На сторонах $BC, AC$ и $AB$ взяты…

Разбор сложных заданий в тг-канале:

В треугольнике $ABC$ проведены медианы $BB_1$ и $CC_1$. На сторонах $BC, AC$ и $AB$ взяты соответственно точки $M, N$ и $P$, причём $MN ‖ BB_1, MP ‖ CC_1$ и $BM : BC = 1 : 5$.

а) Докажите, что $BP = {1}/{10}AB, CN = {2}/{5}AC$.

б) Найдите площадь треугольника $MNP$, если площадь треугольника $ABC$ равна $45$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Решите неравенство ${35·3^x}/{4+10·3^x-6·3^{2x}}≥{3^x+2}/{3^{x+1}+1}-{3^{x+1}-1}/{3^x-2}$.

Окружность с центром $O_1$ радиусом $9$ вписана в треугольник $ABC$. Окружности с центрами $O_2$ и $O_3$ и радиусами ${81} / {25}$ и $1$, которые вписаны в углы треугольника $A$ и $C$ соответственно…

Один из двух отрезков, соединяющих середины противоположных сторон выпуклого четырёхугольника, делит его площадь пополам, а другой — в отношении ${6} / {7}$. а) Докажите, что данный …

В окружность вписана трапеция ABCD с основаниями AD и BC (AD > BC), один из углов которой равен $60°$. В трапецию вписана ещё одна окружность.

а) Докажите, что угол ABD - острый.

б) …