Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
В треугольнике $ABC$ проведены медианы $BB_1$ и $CC_1$. На сторонах $BC, AC$ и $AB$ взяты…
В треугольнике $ABC$ проведены медианы $BB_1$ и $CC_1$. На сторонах $BC, AC$ и $AB$ взяты соответственно точки $M, N$ и $P$, причём $MN ‖ BB_1, MP ‖ CC_1$ и $BM : BC = 1 : 5$.
а) Докажите, что $BP = {1}/{10}AB, CN = {2}/{5}AC$.
б) Найдите площадь треугольника $MNP$, если площадь треугольника $ABC$ равна $45$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность с центром $O_1$ радиусом $9$ вписана в треугольник $ABC$. Окружности с центрами $O_2$ и $O_3$ и радиусами ${81} / {25}$ и $1$, которые вписаны в углы треугольника $A$ и $C$ соответственно…
Один из двух отрезков, соединяющих середины противоположных сторон выпуклого четырёхугольника, делит его площадь пополам, а другой — в отношении ${6} / {7}$. а) Докажите, что данный …