Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $AB$ и $AC$ …
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $AB$ и $AC$ в точках $M$ и $N$.
а) Докажите что центр окружности, вписанной в треугольник $AMN$, лежит на окружности, вписанной в треугольник $ABC$.
б) Найдите расстояние между центрами этих окружностей, если $AB = CN = 10, BM = 6, sinA = {4√3}/{7}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $KLMN$ боковая сторона $KL$ перпендикулярна основаниям. Из точки $K$ на сторону $MN$ опустили перпендикуляр $KA$. На стороне $KL$ отмечена точка $B$ так, что прямые $LA$ и $BN$ параллельн…
Основания трапеции равны $7$ и $34$, а её диагонали равны $9$ и $40$.
а) Докажите, что диагонали трапеции перпендикулярны.
б) Найдите площадь трапеции.
В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …