Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ …
Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ - центр вписанной в него окружности, $O$ - точка пересечения высот. Известно, что $∠NMQ = ∠PNQ + ∠PQN$.
а) Докажите, что точка $K$ лежит на окружности, описанной около треугольника $NPQ$.
б) Найдите угол $PKO$, если $∠MNQ = 42°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $E$ и $F$.
а) Докажите что центр окружности, вписанной в треугольник $BEF$, лежит на окружности, в…
В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …