В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра н…
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между прямыми $AB$ и $CD$, если $AB = 8√3, AD = 5√3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной треугольной пирамиде $DABC$ с вершиной $D$ сторона основания $AB$ равна $9$, высота равна $3$. На рёбрах $AB$, $AC$, $AD$ отмечены точки $P$, $K$, $F$ соответственно, причём $AP=AK=3$ и $AF=2$.…
Дан куб $ABCDA_1B_1C_1D_1$. На ребре $AA_1$ отмечена точка $M$, причём $AM:MA_1=1:1$, на ребре $BB_1$ отмечена точка $N$,
причём $BN:NB_1=1:2$, на ребре $CC_1$ отмечена точка $K$, причём $CK:KC_1=1:3$.…
Дана правильная четырёхугольная пирамида $KMNPQ$ со стороной основания $MNPQ$, равной $6$, и боковым ребром $3√{26}$.
а) Постройте сечение пирамиды плоскостью, проходящей через прямую $NF$ п…