Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Бесплатный интенсив по математике (профиль)

28 марта — 3 апреля

На бесплатном интенсиве ты:
✅ Научишься решать показательные и логарифмические уравнения, которые встречаются в №5 и №12 в ЕГЭ.
✅ Сможешь выполнять №10 с показательными и логарифмическими функциями.
✅ Запомнишь квадраты и кубы чисел, которые встречаются чаще всего в вариантах.
✅ Узнаешь, как правильно оформлять уравнение №12 в бланке.
✅ Вспомнишь все свойства степеней, а также все основные сдвиги функций.

а) Решите уравнение ${sin3πx}/{1 + √3 ctgπ x}= 0$. б) Найдите все корни этого у…

Разбор сложных заданий в тг-канале:

а) Решите уравнение ${sin3πx}/{1 + √3 ctgπ x}= 0$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-1{2}/{5};2.5]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение $3√{3}cos({3π}/{2}+x)-3=2sin^{2}x$.

б) Укажите корни этого уравнения, принадлежащие отрезку $[2π; 3π]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение $4cos^{2}x = 3cos2x + 1$.

б) Найдите корни уравнения, принадлежащие отрезку $[-4π;-{5π}/{4})$.