При проведении школьной математической олимпиады итоговая сумма баллов составля…
При проведении школьной математической олимпиады итоговая сумма баллов составляется из трёх баллов за участие, $17$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую взятую и нерешённую задачу. Каждую задачу участник выбирает себе самостоятельно в запечатанном конверте. Число задач, предлагаемых для решения, не ограничено. а) У одного из участников, решившего $m$ задач и не решившего $n$ задач, итоговая сумма оказалась равной $t$ баллов. Найдите итоговую сумму участника, решившего $3m$ задач и не решившего $3n$ задач. б) Какое минимальное число задач надо взять, чтобы итоговая сумма оказалась равной нулю? в) Докажите, что если итоговая сумма у двух участников оказалась одинаковой, то разность между числом всех задач, взятых для решения одним участником, и числом задач, взятых для решения другим участником, делится на $25$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2, по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы о…
Можно ли привести пример пяти различных натуральных чисел, произведение которых равно $936$ и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?
Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:
а) четыре числа;
б) сто чисел;
в) бесконечное множество чисел, котор…