Зарегистрироваться Войти через вк

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ …

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.

а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, вписанной в треугольник $ABC$.

б) Найдите расстояние между центрами этих окружностей, если $AB = 10, AC = 12, sinA = {√7}/{4}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.

а) Докажите, что $△MNP$ прямоугольный.

б) Найдите площадь $△MNP$,…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.

ABCD - прямоугольник. Окружность с центром в точке B радиусом AB пересекает продолжение стороны AB в точке E. Прямая EC пересекает прямую AD в точке K, а окружность во второй раз -…