Зарегистрироваться Войти через вк

В треугольнике $ABC$ $AB=8$, $∠ A=∠ B$, $\cos A={4} / {5}$. Найдите биссектрису $CH$.

Сложность:
Среднее время решения: 2 мин. 2 сек.

В треугольнике $ABC$ $AB=8$, $∠ A=∠ B$, $\cos A={4} / {5}$. Найдите биссектрису $CH$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

Найдите градусную меру дуги $AC$ окружности, на которую опирается угол $ABC$ (см. рис. ). Ответ дайте в градусах.

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнего угла при вершине $C$, причём точка $D$ лежит на прямой $AB$. На продолжении стороны $AC$ за точку $C$ выбрана…