Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Биссектрисы $AA_{1}$ и $BB_{1}$ треугольника $ABC$ пересекаются в точке $O$ так, что во…

Сложность:
Среднее время решения: 2 мин. 26 сек.

Биссектрисы $AA_{1}$ и $BB_{1}$ треугольника $ABC$ пересекаются в точке $O$ так, что вокруг четырёхугольника $A_{1}OB_{1}C$ можно описать окружность. Найдите площадь треугольника $ABC$, если $AC=4√ {3}$, $BC=5$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения параметра $а$, при каждом из которых уравнение $x^3 + 3x^2 - x log_3(a + 1) + 5 = 0$ имеет единственное решение на отрезке $[0; 2]$.

Найдите все значения a, при каждом из которых система неравенств $\{\table\(a - x^2)(a + x - 2) < 0; \x^2 ≤ 1;$ не имеет решений.

При каких значениях параметра $a$ система $\{\table\y={|x|}; \(x-sinπa)^2+(y-a)^2≤a;$ имеет ровно два решения?

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?