Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Решите неравенство ${4^{x}+27·2^{x}+18}/{2^{2x}+8·2^{x}+12}≥1+2^{x}-{2^{x}-3}/{2^{x}+6}$ …

Решите неравенство ${4^{x}+27·2^{x}+18}/{2^{2x}+8·2^{x}+12}≥1+2^{x}-{2^{x}-3}/{2^{x}+6}$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Для $x ≥ 0$ решите систему неравенств

$\{\table\10x^4 - 3x^3 - 38x^2 - 47x + 110 ≥ 0; \10x^4 - 23x^3 - 8x^2 + 23x + 10 ≤ 0;$

Решите неравенство ${45⋅ 2^x-90+45⋅ 2^{-x}} / {2^x+2+2^{-x}}-{21⋅ 2^x+21} / {2^x+1}⩽{2^{x+3}-8} / {2^x+1}$.

Решите неравенство $log_3(x - 1) ≤ 4 - 9 log_{9(x-1)}3$.

Для $x ≥ 0$ решите систему неравенств $\{\table\x^4-3x^3-3x^2+5x+12≥0; \x^4 - 4x^3 + x^2 + 4x + 6 ≤ 0;$.