Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Решите уравнение: $\log_{5}(15+√ {x-5})+\log_{√ {x-5}+15}25(√ {x-5}+15)=4$.

Сложность:
Среднее время решения: 3 мин. 53 сек.

Решите уравнение: $\log_{5}(15+√ {x-5})+\log_{√ {x-5}+15}25(√ {x-5}+15)=4$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $cos(x - {3π}/{2}= sin 2x$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-{3π}/{2};0]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2})$.

а) Решите уравнение ${sin 2x}/{sin(π - x)= √2$.

б) Укажите корни этого уравнения, принадлежащие промежутку $[-{5π}/{2};-π)$.

а) Решите уравнение $11\cos 2x=7\sin (x-{π} / {2})-9$. б) Укажите корни этого уравнения, принадлежащие отрезку $[-π;0]$.