Зарегистрироваться Войти через вк

Решите уравнение: $\log_{5}(15+√ {x-5})+\log_{√ {x-5}+15}25(√ {x-5}+15)=4$.

Сложность:
Среднее время решения: 3 мин. 46 сек.

Решите уравнение: $\log_{5}(15+√ {x-5})+\log_{√ {x-5}+15}25(√ {x-5}+15)=4$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $125^{x} - 3·25^{x} - 5^{x+2} + 75 = 0$.

б) Укажите все корни этого уравнения, принадлежащие отрезку $[log_{5} 4; log_{5} 11]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2})$.

а) Решите уравнение $11\cos 2x=7\sin (x-{π} / {2})-9$.

б) Укажите корни этого уравнения, принадлежащие отрезку $[-π;0]$.

а) Решите уравнение $log_2^2(2 sin x + 1) - 17 log_2(2 sin x + 1) + 16 = 0$.

б) Укажите корни этого уравнения, принадлежащие отрезку $[{π}/{4};2π]$.