Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Найдите наименьшее значение функции $y=6+27x-x^3$ на отрезке $[-3;4]$.

Сложность:
Среднее время решения: 2 мин. 55 сек.

Найдите наименьшее значение функции $y=6+27x-x^3$ на отрезке $[-3;4]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите точку максимума функции $y=8x-{2}/{3}x^{{3}/{2}}-106$.

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите наибольшее значение функции $y = (x + 4)^2(x + 1) + 19$ на отрезке $[-5; -3]$.