Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Прямая $y=9x+5 $ является касательной к графику функции $y=-x^2+bx-11 $. Найдите …

Сложность:
Среднее время решения: 3 мин. 33 сек.

Прямая $y=9x+5 $ является касательной к графику функции
$y=-x^2+bx-11 $. Найдите $b$, учитывая, что абсцисса точки касания больше $1$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5;8)$. Найдите точку экстремума функции $f(x)$, принадлежащую отрезку $[-3;7]$.

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$. На оси абсцисс отмечено десять точек: $x_1$, $x_2$, $x_3$, … , $x_8$, $x_9$, $x_{10}$. Сколько из этих точек лежит на промежутка…

На рисунке изображён график функции $y=f'(x)$ производной функции $f(x)$, определённой на интервале $(-7;4)$. В какой точке отрезка $[-3;2]$ функция $f(x)$ принимает наибольшее значение?

На рисунке изображён график функции $y = f(x)$, определённой на интервале $(-2; 8)$. Определите количество точек, в которых производная функции $f(x)$ равна $0$.