Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

На доске было написано $30$ натуральных чисел (не обязательно различных), каждое …

На доске было написано $30$ натуральных чисел (не обязательно различных), каждое из которых больше $10$, но не превосходит $50$. Среднее арифметическое написанных чисел равнялось $21$. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались меньше $6$, с доски стёрли. а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше $16{,}5$? б) Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше $18$, но меньше $19$? в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На доске записаны числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. За один ход разрешается стереть произвольно три числа, сумма которых меньше 27 и отлична от к…

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд мож…

Множество чисел назовём особенным, если его можно разбить на два подмножества с одинаковой суммой чисел. а) Является ли множество $\{750; 751; … , 949\}$ особенным? б) Является ли мн…

На доске написаны $40$ натуральных чисел. Какие-то из них белые, а какие-то — зелёные. Белые числа кратны $9$, зелёные кратны $4$. Все белые числа отличаются друг от друга, все зелёные т…