Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Две девочки делают фотографии во время туристической поездки. В первый день Кат…

Две девочки делают фотографии во время туристической поездки. В первый день Катя сделала $k$ фотографий, а Маша — $m$ ($k⩾1$, $m⩾1$). Каждый последующий день каждая из девочек делает на $1$ фотографию больше, чем в предыдущий. Всего за время поездки Маша сделала на $715$ фотографий больше, чем Катя. а) Могло ли это произойти за $5$ дней? б) Могла ли Катя за $11$ дней сделать $1000$ фотографий? в) Определите максимальное количество фотографий, которое могла сделать Маша за все эти дни, если Катя в последний день поездки сделала меньше $35$ фотографий.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ …

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

Кристина задумала трёхзначное натуральное число.

а) Может ли частное этого числа и суммы его цифр быть равным 3?

б) Может ли частное этого числа и суммы его цифр быть равным 28?

в)…

Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:

а) четыре числа;

б) сто чисел;

в) бесконечное множество чисел, котор…