Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Биссектрисы $AA_{1}$ и $BB_{1}$ треугольника $ABC$ пересекаются в точке $O$ так, что во…

Сложность:
Среднее время решения: 2 мин. 16 сек.

Биссектрисы $AA_{1}$ и $BB_{1}$ треугольника $ABC$ пересекаются в точке $O$ так, что вокруг четырёхугольника $A_{1}OB_{1}C$ можно описать окружность. Найдите площадь треугольника $ABC$, если $AC=4√ {3}$, $BC=5$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения $a$, при каждом из которых уравнение ${x^3 + x^2 - 16a^2x - 5x + a}/{x^3 - 16a^2x}= 1$ имеет единственный корень.

При каких значениях параметра $a$ система $\{\table\y={|x|}; \(x-sinπa)^2+(y-a)^2≤a;$ имеет ровно два решения?

Найдите все значения параметра a, при каждом из которых система уравнений $\{\table\y=√{-8-6x-x^2}; \y+ax=a+1;$ имеет единственное решение.

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?