Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Решите неравенство $log_{|x+4|}(16 + 14x - 2x^2) ≥ 2$.

Решите неравенство $log_{|x+4|}(16 + 14x - 2x^2) ≥ 2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Решите неравенство ${35·3^x}/{4+10·3^x-6·3^{2x}}≥{3^x+2}/{3^{x+1}+1}-{3^{x+1}-1}/{3^x-2}$.

Для $x ≥ 0$ решите систему неравенств $\{\table\x^4-3x^3-3x^2+5x+12≥0; \x^4 - 4x^3 + x^2 + 4x + 6 ≤ 0;$.

Решите неравенство: ${1}/{log_{x^2-x}0.5}+{1}/{log_{x^2-x}0.25}+{1}/{log_{x^2-x}4}≥-1$.

Для $x ≥ 0$ решите систему неравенств

$\{\table\10x^4 - 3x^3 - 38x^2 - 47x + 110 ≥ 0; \10x^4 - 23x^3 - 8x^2 + 23x + 10 ≤ 0;$