Задание 12 из ЕГЭ по математике (база). Страница 2
В параллелограмме ABCD проведена биссектриса угла A, пересекающая сторону BC в точке F. Найдите FC, если AB = 5, а периметр параллелограмма равен 24.
Основания равнобедренной трапеции 26 и 56, боковая сторона равна 25. Найдите высоту трапеции.
В трапеции $ABCD$ известно, что $AB = CD, ∠CDA = 65°, ∠BAC = 25°$. Найдите угол $ACD$. Ответ дайте в градусах.
В трапеции $ABCD$ известно, что $AB = CD, ∠BDA = 35°, ∠BDC = 25°$. Найдите угол $ABD$. Ответ дайте в градусах.
В треугольнике ABC проведена биссектриса CL, угол ALC равен $108°$, угол ABC равен $72°$. Найдите угол BAC. Ответ дайте в градусах.
В треугольнике ABC проведена биссектриса AD, угол ADC равен $120°$, угол ABC равен $87°$. Найдите угол ACB. Ответ дайте в градусах.
В выпуклом четырёхугольнике $LMNK$ известно, что $LM = MN, LK = KN, ∠M = 64°, ∠K = 122°$. Найдите угол $N$. Ответ дайте в градусах.
В выпуклом четырёхугольнике $ABCD$ известно, что $AB = BC, AD = CD, ∠B = 85°, ∠D = 131°$. Найдите угол $A$. Ответ дайте в градусах.
В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $\cos A={3} / {5}$
(см. рис.). Найдите $AB$.
В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=3$, $\cos A={4} / {5}$
(см. рис.). Найдите $AB$.
Угол $ACO$ равен $32^°$. Его сторона $CA$ касается окружности с цент-
ром в точке $O$. Сторона $CO$ пересекает окружность в точках $B$ и $D$ (см. рис.). Найдите градусную меру дуги $AD$ окружност…
Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.
Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Угол $CAB$ равен $54^°$. Найдите угол $AOB$. Ответ дайте в градусах.
Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь относится к площади прямоугольника как $√ {3}:2$.
Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?
В треугольнике $ABC$ $AC=BC$, $AB=15$
и $\tg ∠ BAC={2√ {5}} / {5}$ (см. рис.). Найдите высоту $AH$.