Задание 12 из ЕГЭ по математике (база): задача 36

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 56 сек.

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.

В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.

В треугольнике ABC известно, что AB = BC, медиана BL равна $18$. Площадь треугольника ABC равна $108√7$. Найдите длину стороны BC.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.