Задание 19 из ЕГЭ по математике (профиль): задача 71

Разбор сложных заданий в тг-канале:

Дана последовательность натуральных чисел, в которой каждое число, кроме первого и последнего, больше среднего арифметического соседних с ним членов этой последовательности.

а) Приведите пример последовательности, состоящей из пяти членов, с суммой, равной 50.

б) Может ли в последовательности из пяти членов быть два равных между собой?

в) Какая минимальная сумма может быть в последовательности из шести членов?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…

На сайте провели опрос, кого из $180$ актёров кино посетители считают лучшим актёром года. На сайте отображается рейтинг каждого актёра — доля голосов, отданная за него, в процентах,…

Имеется уравнение $ax^2+bx+c = 0 $, числа $a$, $b$, $c$ — целые, $a≠0$. а) Найдите все возможные значения $b$, если известно, что $a=10$, $c=30$, а уравнение имеет два различных целых корня. б) На…

Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев: