Задание 19 из ЕГЭ по математике (профиль): задача 71
Дана последовательность натуральных чисел, в которой каждое число, кроме первого и последнего, больше среднего арифметического соседних с ним членов этой последовательности.
а) Приведите пример последовательности, состоящей из пяти членов, с суммой, равной 50.
б) Может ли в последовательности из пяти членов быть два равных между собой?
в) Какая минимальная сумма может быть в последовательности из шести членов?
Объект авторского права ООО «Легион»
Бесплатный интенсив по математике (профиль)
✅ Сможешь увеличить свой результат с нуля на 40 баллов, решишь 100+ прототипов
✅ Изучишь основные темы по профильной математике, узнаешь лайфхаки и разберёшься в структуре всего экзамена
✅ Наработаешь твердую базу и заполнишь пробелы предыдущих лет
У тебя будет:
- 1 онлайн-вебинар по 1 часу в неделю.
- Домашка после каждого веба без дедлайна (делай, когда тебе удобно).
- Скрипты, конспекты, множество полезных материалов.
- Удобный личный кабинет: расписание вебов, домашки, твой прогресс и многое другое.
- Отдельная беседа в ТГ с сокурсниками и преподавателями.
Вместе с этой задачей также решают:
В ряд выписаны натуральных чисел. Сумма любых четырёх последовательных чисел равна .
а) Возможно ли, что сумма всех чисел равна , если ?
б) Возможно ли, что сумма в…
человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…
Тридцать пять шариков массой г, г, , г разложили по двум коробкам, в каждой коробке хотя бы один шарик. Масса каждого шарика выражается целым числом граммов. Затем из второ…