Задание 19 из ЕГЭ по математике (профиль): задача 70
Для проведения тестирования было подготовлено $4n + 3 (n ∈ N)$ вопросов. Результаты тестирования заносятся на отдельную карточку в одну строку, состоящую из $4n + 3$ клеток. В случае верного ответа в соответствующую клетку записывается $1$, в случае неверного - $0$. Если в средней клетке этой строки $1$, а в симметричных относительно неё числа одинаковые, то результат называется особенным. Если же число единиц больше числа нулей, то - "удовлетворительным".
Найдите: а) количество всех возможных различных результатов при $n = 1$;
б) количество всех возможных особенных результатов при $n = 2$;
в) формулу, по которой можно находить число всех возможных различных, одновременно особенных и удовлетворительных результатов при произвольном значении $n$;
г) наибольшее значение $n$, при котором число всех возможных различных результатов, указанных в пункте в), меньше $1500$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Имеется уравнение $ax^2+bx+c = 0 $, числа $a$, $b$, $c$ — целые, $a≠0$. а) Найдите все возможные значения $b$, если известно, что $a=10$, $c=30$, а уравнение имеет два различных целых корня. б) На…
Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 4 раза больше, либо в 4 раза меньше предыдущего. Сумма в…
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.