Задание 19 из ЕГЭ по математике (профиль): задача 69

Разбор сложных заданий в тг-канале:

Стрелок ведёт стрельбу по закрывающимся 4n1(nN,n>1) мишеням, расположенным в одну линию друг за другом. Результаты стрельбы заносятся в одну строку, состоящую из 4n1 клеток. Если мишень поражена, то в соответствующую клетку заносится 1, если нет, то 0. Если в средней клетке этой строки 1, а в симметричных относительно неё числа одинаковые, то результат называется исключительным. Если же число единиц больше числа нулей, то проходным.

а) Укажите число всех возможных различных результатов при n=3.

б) Укажите число всех возможных различных исключительных результатов при n=2.

в) Найдите формулу, по которой можно находить число всех возможных различных результатов, которые одновременно являются проходными и исключительными.

г) Укажите наибольшее значение n, при котором число всех возможных различных результатов, указанных в пункте в), меньше 1700.

Объект авторского права ООО «Легион»

Посмотреть решение

Бесплатный интенсив по математике (профиль)

На бесплатном интенсиве ты:

✅ Сможешь увеличить свой результат с нуля на 40 баллов, решишь 100+ прототипов

✅ Изучишь основные темы по профильной математике, узнаешь лайфхаки и разберёшься в структуре всего экзамена

✅ Наработаешь твердую базу и заполнишь пробелы предыдущих лет

У тебя будет:

  • 1 онлайн-вебинар по 1 часу в неделю.
  • Домашка после каждого веба без дедлайна (делай, когда тебе удобно).
  • Скрипты, конспекты, множество полезных материалов.
  • Удобный личный кабинет: расписание вебов, домашки, твой прогресс и многое другое.
  • Отдельная беседа в ТГ с сокурсниками и преподавателями.

Вместе с этой задачей также решают:

а) Дана арифметическая прогрессия с целыми неотрицательными членами an. Последовательность cn сформирована по правилу cn=an+72an2. Сколько простых членов подряд может…

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x+S(x)=2015;

б) x+S(x)+S(S(x))=2015;

в) x+S(x)+S(S(x))+S(S(S(x)))=2015.

Музыкальную школу посещают более 20 и менее 45 учащихся. На областной конкурс было заявлено более половины ребят из музыкальной школы, но потом ровно один из них отказался участвов…

Ксюша задумала трёхзначное натуральное число n. В результате деления этого числа на сумму его цифр получается натуральное число m. а) Может ли m=11? б) Какое наименьшее число n мог…