Задание 18 из ЕГЭ по математике (профиль): задача 53
Найдите все значения параметра a, при каждом из которых решение неравенства ${(x - a)(a - 3√x)}/ {√{12 - x - 2a}} ≥ 0$ содержит отрезок длиной не менее $2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каких значениях параметра $a$ система $\{\table\y≥-{|x-2sinπα|}; \(x-sin2πα)^2+(y-4a)^2={2a^4}/{25};$ имеет ровно два решения?
Найдите все значения $a$, при каждом из которых уравнение $\ln(6x-1)⋅√ {x^2-2x+2a-a^2}=0$. имеет ровно один корень на отрезке $[0; 1]$.
При каких значениях a система уравнений имеет ровно четыре решения?
$\{\table{{|{|x|}-3|}+{|y-5|}}=4; {{|x-2|}+{|y-1|}}=a;$