Задание 18 из ЕГЭ по математике (профиль): задача 15

Разбор сложных заданий в тг-канале:

Две девочки делают фотографии во время туристической поездки. В первый день Катя сделала $k$ фотографий, а Маша — $m$ ($k⩾1$, $m⩾1$). Каждый последующий день каждая из девочек делает на $1$ фотографию больше, чем в предыдущий. Всего за время поездки Маша сделала на $715$ фотографий больше, чем Катя.

а) Могло ли это произойти за $5$ дней?

б) Могла ли Катя за $11$ дней сделать $1000$ фотографий?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения $a$, при каждом из которых уравнение $√{3^{2x} - 5a} = 3^{x} - a$ имеет единственный корень.

Найдите все неотрицательные значения $a$, при каждом из которых система уравнений

$\{\table\√{(x-3)^2+y^2}+√{x^2+(y-a)^2}=√{a^2+9}; \y={|2-a^2|};$

имеет единственное решение.

При каких значениях параметра $a$ система

$\{\table\x^2+y^2+9=a^2+4x; \ {||x-3|-|x-6||}=y;$

имеет не менее трёх решений.

Найдите все значения параметра а, при каждом из которых уравнение $x^3 - x^2 - x log_2(a - 1) + 12 = 0$ имеет единственное решение на отрезке $[0; 3]$.