Задание 18 из ЕГЭ по математике (профиль): задача 14

Разбор сложных заданий в тг-канале:

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2, по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы он задумал числа 1,-5, 6, то на доске был бы выписан набор -5, -4, 1, 1, 2, 6, 7.

а) На доске был выписан набор -9, -7, -5, -3, -2, 2, 4. Какие числа задумал учитель?

б) Для некоторых четырёх задуманных ненулевых чисел на доске выписан набор. Всегда ли по этому набору можно определить задуманные числа?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения параметра $a$, при каждом из которых уравнение
$x^3-8x^2+ax^2-3ax+15x=(x+a-5)(3-x)√ {x+a+4} $ имеет единственный корень на отрезке $[0;5]$.

Найдите все неотрицательные значения $a$, при каждом из которых система уравнений

$\{\table\√{(x-a)^2+y^2}+√{x^2+(y+1)^2}=√{a^2+1}; \3x={|a^2-4|};$

имеет единственное решение.

Найдите все значения параметра $a$, при каждом из которых неравенство $a^2+2a-\sin^2x+a⋅\cos x>2$ выполняется для любого значения $x$.

Найдите все значения параметра $a$, при каждом из которых система уравнений $\{{\table {x^2=y^2{,}}; {y^2+x^2-2(a-2)y+4ax+5a^2-4a=5};} $ имеет четыре различных решения.